Skip to main content

PDMS

Work of adhesion/separation between soft elastomers of different mixing ratios

Submitted by Yalin Yu on

Adhesion between soft matter is a universal mechanical problem in bio-engineering and bio-integration. The Johnson–Kendall–Roberts (JKR) method is widely used to measure the work of adhesion and work of separation between soft materials.

Flexible and Sensitive Foot Pad for Sole Distributed Force Detection

Submitted by mortezaamjadi on

In this work, we develop high flexible and compressible porous PDMS structures by using sugar cubes as templates. Force sensitive resistor (FSR) sensors were fabricated by the filtration of the CNT solution inside the porous structure of PDMS. We found that sufficient acid treatment can increase the adhesion between CNTs and PDMS. FSR sensors respond the applied pressure and compressive strains by high linearity (R2>0.97) and sensitivity (GFs>2) with a reliable manner.

Tunable electrical and mechanical responses of PDMS and polypyrrole nanowire composites

Submitted by duping812 on

doi:10.1088/0022-3727/46/19/195303

A generic experimental procedure is presented in this work to enhance
the electrical responses of polydimethylsiloxane (PDMS) through
incorporation of conducting polymer nanowires, while maintaining the
desirable mechanical flexibility of PDMS. The conducting polypyrrole

Indentation of polydimethylsiloxane submerged in organic solvents

Submitted by Yuhang Hu on

This paper uses a method based on indentation to characterize a polydimethylsiloxane (PDMS) elastomer submerged in an organic solvent (decane, heptane, pentane, or cyclohexane).  An indenter is pressed into a disk of a swollen elastomer to a fixed depth, and the force on the indenter is recorded as a function of time.  By examining how the relaxation time scales with the radius of contact, one can differentiate the poroelastic behavior from the viscoelastic behavior.  By matching the relaxation curve measured experimentally to that derived from the theory of poroelasticity, o