User login

Navigation

You are here

Material Testing

Comparative Biomechanics of Hagfish Skins & Planar Biaxial Testing

In the recently published paper by the Department of Biology at College of Charleston and at Valdosta State University, researchers measured the material properties of hagfish skin and compared histological data from the skins of four hagfish species. Skin samples were subjected to uniaxial and biaxial tensile testing to study their strength, stiffness, and extensibility. ADMET eXpert 8600 Planar Biaxial testing system was used to conduct planar biaxial tests.

How can solid ice be tested in laboratory environment (mechanical testing)?

Below is a blog post based on equipment that we have built for testing solid ice samples. We designed an ADMET biaxial testing system (eXpert 8600 series) in collaboration with the Rock and Ice Deformation Laboratory (RIDL) at Woods Hole Oceanograhic Institution (WHOI). 

Test Application

Material Testing Practices Prevent Structural Damages in Construction

Structural Engineering Reports are insightful reports prepared by a professional engineer that check for potential damages by evaluating property structures and substructures, identify the root cause of damage, and provide recommendations on foundation repairs. 

Small Specimen Fatigue Testing

Studying fatigue properties of small specimens can be challenging, yet is needed for research purposes as well as for product and verification testing in industries like the medical device and additive manufacturing.

Fatigue testing allows manufacturers and researchers to get a critical understanding of how a material or component will perform in real-world loading scenarios over the course of time. Common fatigue testing definitions and keywords include:

Tensile Testing Concepts & Definitions

Tensile tests are used to determine how materials behave under tension load. In a simple tensile test, a sample is typically pulled to its breaking point to determine the ultimate tensile strength of the material. The amount of force (F) applied to the sample and the elongation (∆L) of the sample are measured throughout the test.

Young’s Modulus, Tangent Modulus, and Chord Modulus

This blog post covers the description and determination of Young’s modulus, tangent modulus, and chord modulus. These properties, commonly used for product and material specification, can be calculated by subjecting a specimen to uniaxial force, measuring its stress and strain properties, and generating a stress-strain curve. The accuracy of the modulus determination depends on the precision of the load and strain measurements.

Jaw Selection for Tensile Testing Grips

Tensile grip jaw selection plays an important role for successful mechanical tests as if specimen slippage between the jaws occurs or if the specimen breaks or tears in the jaw area testing may need to be discarded. This post covers the available jaw surface types for tensile grips and also the operation of quick-change type jaws.

Introduction

Load Calculator

In our industry, equipment, including universal testing machines and grips and fixtures, are categorized by the maximum force capacity. We have generated an automatic load calculator to help calculate the required forces necessary to test a certain type of material. The calculator can be found here:  https://www.admet.com/calculators/load-calculator/

To use the calculator:

1- Select the specimen geometry. Options include: rectangular, round, tubular, by area.

Automation vs. Manual Control in Concrete Testing

Concrete is one of the most widely used materials around the world. The construction industry is often involved in a wide array of testing which requires a variety of testing equipment. In addition to simple compression testing, testing standards such as ASTM C39, ASTM C109, ASTM C469, ASTM C1609 are among the test methods that can be followed to measure the mechanical properties of a concrete specimen. This blog post covers the mechanical testing of concrete in lab environments, its automation, and ways of achieving it.

Mechanical Testing of Concrete

Automotive Interior- Mechanical Testing

Aesthetics and material durability are closely related in consumer-facing industries such as the automotive industry. In addition to designing an aesthetically pleasing interior environment, developers aim to create an interior with durable components to stand up to long-term use. This blog post covers the different mechanical tests used to ensure automotive interior parts pass the test for aesthetics, quality, safety, and durability.

Textile Strength Testing

Textiles, yarn, thread, fabrics, wool, cotton, and other animal and plant-derived fibers are commonly tested to ensure product quality by assessing the performance of materials and making sure they are acceptable towards proper end-use. This blog post will cover certain mechanical testing methods to test fabric and go over the testing standards.

Full blog post, including the recommended equipment, can be found here.

Biomechanical Testing

Biomechanics & Biomechanical Testing

Full blog post can be found here

Key concepts for medical device design include biomechanics, biocompatibility, and biofunctionality. This post will go over the mechanics of an exemplar biological tissue, the bone, and mechanical testing of biomaterials that are used in developing medical devices and equipment.

Equipment for Bend Testing per ASTM Standards and User-Specific Applications

While it is easy to imagine why bend testing needs to be performed on rigid materials like plastics (ASTM D790) and concrete (ASTM C1609), in reality bend test applications are common in a variety of industries. Universal testing machines equipped with bend fixtures are used to calculate flexural modulus, flexural strength, yield point, and more.

Material Testing in High and Low Temperatures

High or low temperature testing is made feasible by adding an environmental chamber to a universal testing machine (UTM). Environmental chambers come with their own temperature controller and, depending on the system’s compatibility, the temperature settings and recordings may be controlled with the UTM’s controller or software.

Stress-Life Fatigue Testing Basics

ADMET CEO and Chief Engineer Richard Gedney's article on fatigue testing applications was published on the Quality Magazine August 2017 issue. 

The article starts with brief descriptions of the four stages of metal fatigue:

Stage 1: Crack Initiation

Stage 2: : Slip Band or Stage 1 Crack Growth

Stage 3: Stage II Crack Growth

Stage 4: Ductile Failure 

How to upgrade an older Universal Testing Machine?

A Universal Testing Machine Retrofit is a system upgrade in which the capabilities and functionality of an outdated and/or broken universal testing machine are improved by pairing them with advanced indicators and replacement components. A system retrofit is commonly performed on but not limited to tensile testing systems, compression testing systems, torsion testing systems, and bend testing systems. Universal testing systems manufactured by Instron, Satec, MTS, Tinius Olsen, Baldwin, Forney, and others are all capable of being upgraded by ADMET’s retrofit service.

marco.paggi's picture

1 year Post-doc position on experimental mechanics at IMT Lucca, Italy

Experimental mechanics, material testing and prototype design

1 Post Doctoral Fellow position at the IMT School for Advanced Studies Lucca, Lucca, Italy, under the supervision of Prof. Marco Paggi (https://www.imtlucca.it/marco.paggi), ERC StG and ERC PoC grant holder (see http://musam.imtlucca.it/CA2PVM.html).

Please apply online at:

Materials Testing- ADMET Blog

Materials Testing is that part of engineering design, development and research that relies on laboratory testing of one kind or another to answer questions. Testing is also required during manufacturing to ensure a material or product meets some predefined specification. A universal testing machine is used to measure the mechanical properties of materials intension, compression, bending or torsion. Common properties of interest include Offset Yield Strength, Young’s Modulus, Poisson's Ratio, Tensile and Compression Strength and Total Elongation.

Alok CG's picture

Material Testing Machines

Can anyone guide me how to get crosshead speed range equal to or greater than 1:3000 in a motorized electromechanical material testing machine? The load capacity should remain same even at lowest speed.

Subscribe to RSS - Material Testing

Recent comments

More comments

Syndicate

Subscribe to Syndicate