Skip to main content

interface

Time for registration for "Interface Design of Polymer Matrix Composites - Mechanics, Chemistry, Modelling and Manufacturing"

Submitted by Bent F. Sørensen on

The programme for the 28th Risø International Symposium on Materials Science has now been finalized (see http://www.risoe.dk/Conferences/symp28/programme.aspx ).

 The Symposium is held at Risø National Laboratory, The Technical University of Denmark, 3-6 September 2007. 

Journal Club Theme of July 2007: Mechanics of Hydrogels

Submitted by H Jerry Qi on

Before we start this issue of J-club, I would like to recommend Prof. Langer's lecture for his MRS Von Hippel Award in the 2005 MRS Fall Meeting (Langer, 2006). His lecture not only delineated the history of the new exciting field of drug delivery and controlled release, but also told us many interesting stories happened in his career development. With Prof. Langer's pioneer work, many new materials are developed for designing new drug delivery and controlled drug release systems.

State-of-the-art understanding of cracking for porous materials?

Submitted by Al Zappor on

It seems there are quite a few experimental studies [1,2] on the fracture properties of porous materials, like nanoporous low-k dielectrics, as a function of porosity. Can anyone point out some references on the theoretical part, like the available models, computational methods or analytical approaches that can capture microstructure information, including porosity, pore geometry etc. Interface delamination of porous materials is also of interest. Thanks.

Strain energy release rate of beam specimen using J-integral

Submitted by Mingji Wang on

Hi All,

Are there any good references showing the detailed derivations of elastic strain energy release rate using J-integral instead of differentiating compliance for end notch beam samples : DCB, 3/4 point bend ...? many thanks ...

Tensile strength and fracture toughness of nanocomposite materials

Submitted by L. Roy Xu on

Are not as high as we expected although very stiff and strong nanotubes or nanofibers (Young’s modulus E~1000GPa) are added into soft polymer matrices like epoxy (E~4GPa).  In our early investigation on the  systematic mechanical property characterizations of nanocomposites (Xu et al., Journal of Composite Materials, 2004--among top 5 in 2005;and top 10 in 2006 of the Most-Frequently-Read Articles in Journal of Composite Materials.) have shown that there was a very small increase (sometimes even decrease) of critical ultimate tensile/bending strengths, and mode-I fracture toughnesses in spite of complete chemical treatments of the interfacial bonding area, and uniform dispersions of nanofibers (click to view a TEM image). Similar experimental results were often reported in recent years. Therefore, mechanics analysis is extremely valuable before we make these “expensive” nanocomposite materials. Our goal is to provide in-depth mechanics insight, and future directions for nanocomposite development. Till now, nanocomposite materials are promising as multi-functional materials, rather than structural materials. Here we mainly focus on two critical parameters for structural materials: tensile strength and fracture toughness. We notice that other mechanical parameters such as compressive strengths and Young’s moduli of nanocomposite materials have slight increase over their matrices.

Interfacial toughness and mode mixity

Submitted by Jae-Hyun Kim on

When I was a graduate student, I spent several months to measure interfacial toughness between metalic (Cu and Au) films and thick substrates(Si and Polycarbonate). My methods were bulge test (blistering test) and 4-point bending test. I had many problems such as making an initial crack(pre-cracking), changing load phase angle applied to specimens, preparing/patterning thin films, constructing my own test apparatus, etc. The biggest problem was to measure the interfacial toughness over a wide range of loading phase angle. For a bimaterial with a non-zero oscillatory index(epsilon), we don't know the phase angle for a minimum interfacial toughness beforehand. Therefore, we need to measure the interfacial toughness over a wide range of phage angle. For engineering purpose, we need a minimum interfacial toughness value for reliability design because this value will lead to a conservative design of systems.

Split singularities and the competition between crack penetration and debond at a bimaterial interface

Submitted by Zhen Zhang on

Zhen Zhang and Zhigang Suo

For a crack impinging upon a bimaterial interface at an angle, the singular stress field is a linear superposition of two modes, usually of unequal exponents, either a pair of complex conjugates, or two unequal real numbers. In the latter case, a stronger and a weaker singularity coexist (known as split singularities). We define a dimensionless parameter, called the local mode mixity, to characterize the proportion of the two modes at the length scale where the processes of fracture occur. We show that the weaker singularity can readily affect whether the crack will penetrate, or debond, the interface.