User login

Navigation

You are here

fracture mechanics

Interfacial toughness and mode mixity

When I was a graduate student, I spent several months to measure interfacial toughness between metalic (Cu and Au) films and thick substrates(Si and Polycarbonate). My methods were bulge test (blistering test) and 4-point bending test. I had many problems such as making an initial crack(pre-cracking), changing load phase angle applied to specimens, preparing/patterning thin films, constructing my own test apparatus, etc. The biggest problem was to measure the interfacial toughness over a wide range of loading phase angle. For a bimaterial with a non-zero oscillatory index(epsilon), we don't know the phase angle for a minimum interfacial toughness beforehand. Therefore, we need to measure the interfacial toughness over a wide range of phage angle. For engineering purpose, we need a minimum interfacial toughness value for reliability design because this value will lead to a conservative design of systems.

Francisco T S Aragao's picture

Homework 1, problem 1 - Self description

        I'm Francisco Thiago S. Aragao. Please call me Thiago. I'm currently enrolled at the University of Nebraska at Lincoln Civil Enginering Master's Program under the advisory of Dr. Yong-Rak Kim. I have also a minor course in Engineering Mechanics. Below I'm answering the questions from the Problem 1 of Fracture Mechanics' Assignment 1.

Prior courses in solid mechanics:

C.H. Wang, "Introduction to Fracture Mechanics"

Here is a link to a 1996 book by C.H. Wang on Fracture Mechanics from the DSTO Aeronautical and Maritime Research Laboratory in Melbourne.

http://www.dsto.defence.gov.au/publications/1880/DSTO-GD-0103.pdf

Zhigang Suo's picture

To the students of ES 242r / ENGM 940

Thank you very much for taking this course. Some of the assignments of
the course will be done on iMechanica. The main purposes of these assignments are

  • to expose students to resources for life-long learning, and
  • to facilitate interactions among students who are taking the course from three campuses (Harvard, MIT and Nebraska).

Please take the following quick steps now.

Lecture 1

The slides for lecture 1 are attached.

Daniel S. Balint's picture

John Hutchinson's Notes on Nonlinear Fracture Mechanics (Pages Rotated)

Attached to this post are the notes John posted in his blog, with all pages rotated counterclockwise 90 degrees, for those who would like to read them on their computers.

 

Notes on Nonlinear Fracture Mechanics

These are the notes I wrote at the Technical University of Denmark in 1979. Zhigang Suo and I will be using these in the course on fracture and thin film mechanics (ES 242r) this spring (2007). This is a joint course with the University of Nebraska.

Engineering Sciences 242r: Fracture Mechanics of Thin Films and Composite Materials

Time. Thursday and Tuesday. 1:30-3:00 pm (Harvard University), 12:30-2:2:00 pm (University of Nebraska). First meeting: 1 February 2007

Place. Harvard University: Fairchild 102 (map). University of Nebraska: 111 Walter Scott Engineering Center

Course website (this page): node/754

A short paper on T-stress of an interfacial crack in a bi-material strip

The attached file is on T-stress of an interfacial crack in a bi-material strip. The geometry of the problem is the same with that of Suo and Hutchinson (1990, IJF). Using a conservation integral technique, a formula for T-stress is derived with two numerical factors.

Damage Accumulation and Fracture Initiation in Uncracked Ductile Solids

doi:10.1016/j.ijsolstr.2006.12.026

Damage accumulation and fracture initiation in uncracked ductile solids subject to triaxial loading
Liang Xue, International Journal of Solids and Structures, Volume 44, Issue 16, 1 August 2007, Pages 5163-5181

Professor

Department of Engineering Mechanics

Tsinghua University

Beijing 100084, China

Juil Yoon's picture

Why Do Freezing Rocks Break?

As you know, the volumetric expansion by 9% during the water-to-ice transition can generate tremendous pressure in a confined space is a common sense. As a result, one may expect freezing water to also fracture rocks.

However, in a recent article in Science, Bernard Hallet explains the power of the 9% water-to-ice expansion in confined spaces is undeniable, but it may rarely be significant for rocks under natural conditions, because it requires a tight orchestration of unusual conditions. Unless the rocks are essentially saturated with water and frozen from all sides, the expansion can simply be accommodated by the flow of water into empty pores, or out of the rock through its unfrozen side.

I think it may be of interest to mechanics. Read more
I hope to hear opinions from people who know about the breaking mechanics of rocks.

Xiao Hu Liu's picture

Delamination in Patterned Films

When the dielectric constant of an insulator in an interconnect is reduced, mechanical properties are often compromised, giving rise to significant challenges in interconnect integration and reliability. Due to low adhesion of the dielectric an interfacial crack may occur during fabrication and testing. To understand the effect of interconnect structure, an interfacial fracture mechanics model has been analyzed for patterned films undergoing a typical thermal excursion during the integration process.

Pages

Subscribe to RSS - fracture mechanics

Recent comments

More comments

Syndicate

Subscribe to Syndicate