Skip to main content

research

Fast nastic motion of plants and bio-inspired structures

Submitted by zichen on

The capability to sense and respond to external mechanical stimuli at various timescales is essential to many physiological aspects in plants, including selfprotection, intake of nutrients and reproduction. Remarkably, some plants have evolved the ability to react to mechanical stimuli within a few seconds despite a lack of muscles and nerves. The fast movements of plants in response to mechanical stimuli have long captured the curiosity of scientists and engineers, but the mechanisms behind these rapid thigmonastic movements are still not understood completely.

Disclination mediated dynamic recrystallization in metals at low temperature

Submitted by Mohammad Aramfard on

Recrystallization is one of the most important physical phenomena in condensed matter that has been utilized for materials processing for thousands of years in human history. It is generally believed that recrystallization is thermally activated and a minimum temperature must be achieved for the necessary atomic mechanisms to occur. Here, using atomistic simulations, we report a new mechanism of dynamic recrystallization that can operate at temperature as low as T = 10 K in metals during deformation.

PhD Querry

Submitted by Abhishek Saini on

I am currently a M.Tech (Mechatronics, Department of Mechanical Engineering) student in IIT Patna. I have strong interests in Applied Mechanics with special focus on Dielectric Elastomer Actuators. I am expecting to graduate by May 2016. Currently i am working on dielectric elastomer actuators and want to continue this in my PhD also. Are there any opportunities for PhD positions available at Harvard Solid Mechanics? What are the essentials needed for the above.

Thanks

Fracture toughening and toughness asymmetry induced by flexoelectricity

Submitted by Amir Abdollahi on

Cracks generate the largest strain gradients that any material can withstand. Flexoelectricity (coupling between strain gradient and polarization) must therefore play an important role in fracture physics. Here we use a self-consistent continuum model to evidence two consequences of flexoelectricity in fracture: the resistance to fracture increases as structural size decreases, and it becomes asymmetric with respect to the sign of polarization. The latter phenomenon manifests itself in a range of intermediate sizes where piezo- and flexoelectricity compete.

Mechanics of Additively Manufactured Biomaterials and Implants: Special issue of J Mech Behav Biomed Mater

Submitted by azadpoor on

Additive manufacturing (AM) has emerged as a powerful technique for manufacturing of various types of biomaterials and implants. Using AM, it is now possible to fabricate biomaterials with arbitrarily complex shapes at different scales. The inventory of biomaterials that can be used in this way continues to increase, extending the possible range of products and applications.

Work of adhesion/separation between soft elastomers of different mixing ratios

Submitted by Yalin Yu on

Adhesion between soft matter is a universal mechanical problem in bio-engineering and bio-integration. The Johnson–Kendall–Roberts (JKR) method is widely used to measure the work of adhesion and work of separation between soft materials.

Conformability of a Thin Elastic Membrane Laminated on a Rigid Substrate With Corrugated Surface

Submitted by Shutao Qiao on

When laminating a thin elastic membrane on a substrate with surface roughness, three scenarios can happen: 1) fully conformed, i.e., the membrane completely follows the surface morphology of the substrate without any interfacial gap; 2) partially conformed; and 3) nonconformed, i.e., the membrane remains flat if gravity is not concerned.