User login

Navigation

You are here

research

Cemal Basaran's picture

A Review of Damage, Void Evolution, and Fatigue Life Prediction Models

Our new review article [open acess] on damage, void evolution, and fatigue life prediction models. We tried to include everything done in the last 20 years. My apologies if we missed your work.
Metals | Free Full-Text | A Review of Damage, Void Evolution, and Fatigue Life Prediction Models (mdpi.com)

https://lnkd.in/dH9UtcC

Antonio Papangelo's picture

On the Effect of Shear Loading Rate on Contact Area Shrinking in Adhesive Soft Contacts

Adhesion and, its interplay with friction, is central in several engineering applications involving soft contacts. Recently, there has been an incredible push towards a better understanding on how the apparent contact area evolves when a shear load is applied to an adhesive soft contact, both experimentally and theoretically. Although soft materials are well-known to exhibit rate-dependent properties, there is still a lack of understanding in how the loading rate could affect the contact area shrinking.

Antonio Papangelo's picture

On the Effect of a Rate-Dependent Work of Adhesion in the Detachment of a Dimpled Surface

AbstractPatterned surfaces have proven to be a valuable design to enhance adhesion, increasing hysteresis and the detachment stress at pull-off. To obtain high adhesive performance, soft materials are commonly, used, which easily conform to the countersurface, such as soft polymers and elastomers. Such materials are viscoelastic; i.e., they show rate-dependent properties. Here, the detachment of two half spaces is studied, one being flat and the other having a dimple in the limit of short range adhesion and a power law rate-dependent work of adhesion, as observed by several authors.

Mirkhalaf's picture

A micromechanics-based deep learning model for short fiber composites

If you are curious about application of machine learning techniques in mechanics problems, our latest paper is probably interesting for you. In this paper, we are proposing a micromechanics-based artificial neural networks model for short fiber composites. You can find the paper here: https://www.sciencedirect.com/science/article/pii/S1359836821001281 

Fan Xu's picture

Nanosleeves: Morphology transitions of infilled carbon nanotubes

Morphology instability of substrate-supported carbon atomic layers can be harnessed to modulate physical properties and functions, which has drawn interesting attention. Curvature would be a critical factor affecting surface morphology and its stability characteristics. Infilled carbon nanotubes, that is to say carbon monolayers with curved geometry and infilled substrates, namely nanosleeves, widely exist in the literature and have many potential applications.

Antonio Papangelo's picture

Stickiness of randomly rough surfaces with high fractal dimension: is there a fractal limit?

Two surfaces are ”sticky” if breaking their mutual contact requires a finite tensile force. At low fractal dimensions D, there is consensus stickiness does not depend on the upper truncation frequency of roughness spectrum (or ”magnification”). As debate is still open for the case at high D, we exploit BAM theory of Ciavarella and Persson-Tosatti theory, to derive criteria for all fractal dimensions. For high D, we show that stickiness is more influenced by short wavelength roughness with respect to the low D case.

Special issue in EABE - "Advanced numerical modelling in geotechnical engineering"

Dear All,

We cordially invite you to submit a manuscript for consideration and possible publication in the special issue on "Advanced numerical modelling in geotechnical engineering" in Engineering Analysis with Boundary Elements (IF=2.884).

This special issue aims to address following topics:

1. Data-driven simulation with field monitoring or experiments.

Journal of Micromechanics and Molecular Physics (JMMP) Starts Several Special Issues

 

Dear Applied Mechanics and Materials Community:

 

Journal of Micromechanics and Molecular Physics (JMMP) starts six special issues in 2021

 

https://mp.weixin.qq.com/s/KR4efNXHhOW6DQw_MUNAAw

 

We are cordialy inviting contributions from all members of 

applied mechanics community.

 

With World Scientific Publication Co.,  we are working to make JMMP a high-impact

Hai Dong's picture

A novel hyperelastic model for bio-tissues & a 2nd kind of Poisson effect

Constitutive models are of fundamental importance to many biomedical problems such as the rupture prediction of aortic aneurysms. Existing structure-based constitutive models such as the widely used Gasser–Ogden–Holzapfel (GOH) model usually need to specify the number of fiber family which may be difficult to identify for many kinds of tissues. In this study, we developed a novel hyperelastic model for biological tissues by considering a fiber distribution as a whole distribution which does not need the information of the number of fiber family.

Xavier Morelle's picture

Anti-icing propylene-glycol materials

Dear fellow iMechanicians,

Here is our recent paper published in EML on novel anti-icing materials based on propylene-glycol (PG) gels. This work was performed in collaboration with Xi Yao, Baohong Chen and myself while working in Zhigang Suo's lab at Harvard, and provides new solutions for anti-icing purposes (i.e. throug blankets design) without large and costly release of PG in the environment.

Anti-icing propylene glycol materials

Xi Yao, Baohong Chen, Xavier P. Morelle and Zhigang Suo*

Zhaohe Dai's picture

Poking/pressurizing thin elastic sheets with sliding boundaries

Dear iMechanicians, I would like to share our recent work on the poking and bulging of elastic thin sheets that were inspired by the classical indentation test and bulge test. Under clamped boundaries, there have been well-established theories and well-controlled experiments in this field.

Oscar Lopez-Pamies's picture

The poker-chip experiments of Gent and Lindley (1959) explained

Despite being commonly credited with initiating the field of cavitation in elastomers, the famed poker-chip experiments of Gent and Lindley (1959) have yet to be fully explained. One likely reason for their elusiveness is that it had long been presumed that cavitation in elastomers was a phenomenon that could be explained solely on the basis of the elasticity of the elastomer at hand.

University-Academia Partnership- 2 positions in Computational Mechanics A postdoc and a Senior PhD Interns)

Computational Mechanics and Modeling of Composites,  fracture, large deformation, machine learning, heat transfer in polymers  

  

oliver oreilly's picture

Vibrations + Contact = Quadratic Nonlinearity

Hello,

Studies of the vibration of a rod in contact with a surface are central to a range of applications from MEMS devices to flexible ocean risers. In our latest paper,

Nate N. Goldberg and Oliver M. O'Reilly Pervasive nonlinear vibrations due to rod-obstacle contact, Nonlinear Dynamics, 2021

Pages

Subscribe to RSS - research

Recent comments

More comments

Syndicate

Subscribe to Syndicate